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1. INTRODUCTION 

The present practice of using high-bypass turbojet engines 

resulted in a decrease in jet noise. However, these engines em 

from their inlet nacelles above a desirable level. The present 

part of a considerable effort being made to reduce inlet noise. 

has 

it no 

work 

ise 

is 

One promising approach to the reduction of inlet noise is the use 

of a high subsonic Mach number inlet, or partially choked inlet. in 

conjunction with an acoustic duct liner. The use of choked inlets has 

long been recognized as an effective means of reducing upstream propaga- 

tion although such inlets require careful design to prevent excessive 

losses in compressor performance. However, the physical mechanisms 

responsible for the noise reduction in high-subsonic Mach number inlets 

are not completely understood, and techniques for the theoretical 

analysis of sound propagation through regions of near-sonic mean flow 

are not available. Two major problems must be overcome in the develop- 

ment of such a model: (1) the mathematical techniques for the calcula- 

tion of sound propagation in ducts are well-developed for parallel ducts 

but are not fully developed for ducts of varying cross section that 

carry mean flows with strong axial and transverse gradients; (2) linear 

acoustic equations are inadequate to describe acoustic propagation in 

regions of near-sonic mean flows 132 . In the itivestigation presented 

here, the first of these two problems was addressed, and a wave-envelope 

technique based on the method of variation of parameters was developed. 

This procedure can be used as the basis of the examination of the second 

aspect of the problem, the development of nonlinear models for the near- 

sonic region. 

The concept of sound reduction by choked inlets has been investi- 

gated experimentally at great length. Several experimental investigators 

tested actual jet engines with various shapes of centerbodies as well as 

experimental ducts to choke the flow. Surveys of the concept of the 

choked inlet were given by Lumsdaine3 4 and Klujber, et al . An updated 

survey is presented here. 



Sobell and Welliver5 tested a Bristol Olympus 6 jet engine; the 

inlet of this engine was choked by using a sonic block silencer. Non- 

inlet noise radiation associated with this experiment may be a reason 

why only a 12 dB noise reduction was observed. Greatrex conducted an 

experiment on an Avon engine with a bullet-shaped centerbody to choke 

the flow. He reported a 20 dB noise reduction. 

To test the effect of choking the flow on the reduction of inlet 

noise, Sawhill tested an ST model inlet with a translating centerbody 

and reported a 33 dB noise reduction when the throat Mach number of the 

inlet was increased from 0.63 to 0.9. Cawthorn, Morris, and Hayes' 

tested an SST inlet with a Viper 8 turbojet engine and a translating 

centerbody to choke the flow. They found that choking the flow resulted 

only in a 3 dB noise reduction. Using two centerbodies of different 

sizes to choke the flow of an SST inlet, Anderson' obtained a 20 dB 

noise reduction at a throat Mach number of 0.77. Anderson, et al" 

conducted a test on an airfoil grid inlet; they used two airfoils posi- 

tioned in parallel in an inlet duct. They reported a loss of 7% in the 

inlet recovery pressure when they attained a 27 PNdB noise reduction. 

Inlet guide vanes also have a significant effect on the noise 

reduction. Chestnutt and Stewart 11 conducted an experiment by using an 

accelerating inlet. They reported noise reductions up to 25 dB, due to 

the elimination of multiple pure tones, when the inlet approached 

choking conditions. The only drawback is that the noise reduction was 

accompanied by a significant reduction in the compressor efficiency. To 

determine the effect of the shape of the guide vane on the noise reduc 

tion, Chestnutt12 tested uncambered and tapered inlet guide vanes. He 

obtained noise reductions of about 28 dB and 36 dB for the uncambered 

and tapered guide vanes, respectively. Anderson, et al" tested radia 1 

vane inlets and showed a 22.5 PNdB noise reduction with a 7% loss in 

recovery pressure. 
12 

Hawking and LawsonlJ reported a large reduction in acoustic energy 

for a waisted geometry. They suggested that this reduction is due to an 

increase in the axial Mach number. Benzakin, Kazin, and Savell14 



conducted an experiment on a lined accelerating inlet. They concluded 

that the noise increases with increasing Mach number until throat Mach 

numbers of 0.6, then the noise level goes down with further increases in 

throat Mach number. 

It is clear from the above experiments that inlet choking may be an 

effective noise suppression mechanism. The amount of noise reduction 

depends on how the choking is achieved. However, the choking may be 

accompanied by a loss in the compressor efficiency. Thus, the optimum 

choking configuration is the one accompanied by no loss or a minor loss 

in the compressor efficiency. 

Many investigators studied the possibility of attaining a signi- 

ficant noise reduction with a minor loss in the compressor efficiency; 

they showed that the loss in the compressor efficiency can be minimized 

by carefully designing the centerbody. 

Klujber15 reported a noise reduction when a sonic inlet is used. 

This reduction occurs when the average throat Mach number increases from 

0.5 to 1.0. He reported also that more reduction of the noise can be 

attained but with a further decrease in the inlet recovery pressure. 

Higgins, Smith, and Wise 16 measured a significant noise reduction 

with a moderate loss in recovery pressure by using variable cowl inlets. 

Koch, Ciskowski, and Garzon 17 reported a 15 dB sound level attenuation 

with a minimum loss of aerodynamic performance when operating at an 

average Mach number of 0.79. Miller and Abbott 
ia tested experimentally 

an inlet with a translating centerbody to choke the flow; they reported 

a 20 dB noise reduction with a pressure recovery of 98.5%. Abbott" 

indicated that the most efficient method to achieve aerodynamic per- 

formance and noise reduction is to use a cylindrical centerbody at 

takeoff and a bulbshaped centerbody at approach to choke the flow. He 

reported that increasing the inlet length results in a higher recovery 

pressure for a given noise reduction. Groth2' tested a J-B5 turbojet 

engine using a translating centerbody inlet with a radial vane. He 

measured a 40 dB reduction in a fully-choked inlet while maintaining a 

recovery pressure of 92.1%. Savkar and Kazin2' showed that a 99% re- 

covery pressure can be attained for the same amount of noise reduction 
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by proper contouring of the centerbody and careful designing of the 

diffuser. Miller22 experimentally determined how a sonic inlet can be 

designed to have a significant noise reduction with a minimum loss of 

total pressure. 

As we see above, most, but not all, of these investigations have 

noted significant reductions of the noise level when the inlet is 

choked. The geometry of the inlet, the geometry of the centerbody and 

the operating condition seem to have an effect on the acoustic as well 

as on the aerodynamic performance. Further, most of the potential noise 

reduction is achieved by operating in the partially choked state (mean 

Mach number in the throat of 0.8-0.9). Some investigators (e.g., 

Chestnutt and Clark23 and Sobel and Welliver5) report the possibility of 

substantial "leakage" through the wall boundary layers, whereas others 

(e.g. Klujber15) report that such leakage is minor. Although the 

experimental studies have demonstrated that the choked inlet is a viable 

technique, they have not provided insight into the physical mechanisms 

that are responsible for the noise reduction or that explain the dif- 

ferences among the several experimental results. 

Several analytical as well as numerical techniques have been 

developed for the analysis of wave propagation in uniform and nonuniform 

ducts. Surveys of these techniques were made by Nayfeh, Kaiser, and 

TelionisP4, Nayfeh25, and Vaidya and Dean26. In this study, only a 

short critique is presented. 

The problem of sound propagation in a uniform duct (rectangular, 

circular, etc.), with or without mean flows, for hard as well as lined 

walled ducts, has been studied extensively. A number of parametric 

studies have been done for the case of uniform ducts, showing the 

effect of each parameter on noise attenuation. A large number of papers 

are cited in the review article of Nayfeh, et al 24 , each of which 

discusses at least one of the acoustic parameters. 

The investigation of the problem of sound propagation in nonuniform 

ducts was motivated by the experimental discoveries discussed earlier in 

this introduction. These investigations are discussed below in order of 

increasing complexity of the mean flow: no flow, one-dimensional flow, 

and two-dimensional flow. 

4 



The problem of sound propagation in a variable-area duct with no- 

mean flow was discussed for horns by Webster 27 
. He considered only the 

lowest propagating mode. Stevenson2' extended Webster's work to inves- 

tigate the propagation of various modes. He used the method of weighted 

residuals to solve the problem of wave propagation in hard-walled horns 

of arbitrary shape. Eversman, Cook, and Beckemeyer 29 extended the 

method of weighted residuals to study multimodal propagation in a non- 

uniform lined duct. 

Alfredson3' divided the variable area duct into a finite number of 

stepped uniform ducts. Thus, a large number of stepped uniform ducts 

are needed to provide sufficient accuracy for cases with large axial 

gradients. 

Nayfeh and Telionis 31 used the method of multiple scales to analyze 

wave propagation in ducts with slowly, but arbitrarily, varying cross 

sections and wall admittance. For the case of hard-walled ducts, the 

solution of Nayfeh and Telionis is equivalent to that of Stevenson for 

slowly-varying ducts. Nayfeh and Telionis pointed out that both of the 

solutions breakdown near cut-off; they suggested using a turning point 

analysis (see 7.3.2 of reference 32) to overcome this problem. 

Isakovitch33, Samuels34, and Salant obtained perturbation solu- 

tions for wave propagation in ducts whose rigid walls have sinusoidal 

undulations of small amplitudes. Their perturbation expansions are not 

valid near resonance conditions; that is, whenever the wave number of 

the wall undulation is approximately equal to the sum or difference of 

the wave numbers of any two acoustic modes. Nayfeh36'37 and Nayfeh and 

Kandi13' used the method of multiple scales to obtain an expansion valid 

near resonance. They found that neither of the modes involved in the 

resonance can propagate in the duct without exciting the other. More- 

over, they found that coupling of an upstream and a downstream mode may 

lead to their being cutoff. 

Quinn 39 and Baumeister and Rice 40 developed finite-difference 

methods to study a plane wave propagating in nonuniform ducts. We note 

that a large amount of computation will be required with these purely 

numerical techniques because a large number of grid points are needed to 
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provide sufficient accuracy. The axial step must be small enough to 

resolve the smallest wave length, while the transverse step must be 

small enough to resolve the highest mode. Thus, the computational time 

increases rapidly with increasing frequency and duct length. To reduce 

the computational time for plane waves in a two-dimensional duct, 

Baumeister4' expressed the potential function $(x,y,t) as $(x,y) exp[i(kx 

- wt)], where k is a properly chosen constant, such as the wavenumber in 

a hard-walled duct. Then he solved for $(x,y) using finite differences. 

Approximating the mean flow by a quasi-one-dimensional flow, 

Powell42 used a multiple reflection method to study the acoustic propa- 

gation through variable-area ducts. Eisenberg and Kao 43 analyzed plane 

waves in a specially-chosen variable-area duct that yields an equation 

with constant coefficients. Davis and Johnson44 used a forward-integra- 

tion technique to solve the acoustic equation describing the axial 

variations. Huerre and Karamcheti45 analyzed the propagation of the 

lowest mode by using the WKB approximation, while King and Karamcheti46 

developed a second-order-accurate numerical method to solve for the 

propagation through a variable-area duct by using the method of char- 

acteristics. 

Nayfeh and co-workers studied extensively the propagation of 

various acoustic modes in ducts having slowly-varying cross sections and 

carrying general mean flows. Nayfeh, Telionis, and Lekoudis 47 dis- 

cussed the acoustic propagation in lined plane ducts with varying cross 

sections and sheared mean flow. This work was extended to annular ducts 

by Nayfeh, Kaiser, and Telionis 48 . The effect of a compressible, sheared 

mean flow on sound transmission through a variable-area plane duct was 

studied by Nayfeh and Kaiser 49 . Using their method, one can determine 

the transmission and attenuation of all modes including the effect of 

transverse as well as axial gradients, but the technique is limited to 

slow variations. Moreover, the expansion needs to be carried out to 

second order in order to determine reflection and intermodal coupling of 

the acoustic signal. Nayfeh, Kaiser, Marshall and Hurst5' carried out 

an experimental study of sound propagating in variable-area ducts with 

and without mean flows. Hard as well as lined duct walls were used. 

The axial variations were small. The experimental data are in reason- 

able agreement with the multiple-scales solution. 

6 



Eversman" developed a theory by using the method of weighted 

residuals to determine the transmission of sound in plane nonuniform 

hard-walled ducts with mean flow. He obtained equations describing the 

axial variations of the modes. To solve these equations, one needs a 

large number of axial steps, especially as the mean Mach number ap- 

proaches unity and the frequency becomes large, leading to a rapid 

decrease in the axial wavelength. 

In summary, purely numerical techniques suffer from the requirement 

of large computation times, and they have been restricted thus far to 

cases of no-mean flow. (D uring the period of time that the work re- 

ported here and in an earlier report 52 was being carried out, finite- 

element methods for ducts with compressible mean flows were developed by 

Sigman, Majjigi and Zinn 53 and by Abrahamson54). Analytical techniques 

have only been applied thus far to simple cases of one-dimensional mean 

flows and/or plane acoustic waves and/or slowly-varying duct geometry 

and promise to become unwieldy for more general cases. Thus, the speci- 

fic analytical and computational tools that are needed for the study of 

wave propagation in ducts involving large gradients in both axial and 

transverse directions are lacking. 

In this study an acoustic theory is developed to determine the 

sound transmission and attenuation through an infinite, hard-walled or 

lined circular duct carrying compressible, sheared mean flows and 

having a variable cross section. The theory is applicable to large as 

well as small axial variations, as long as the mean flow does not 

separate. The technique is based on solving for the envelopes of the 

quasi-parallel acoustic modes that exist in the duct instead of solving 

for the actual wave. The feasibility of this technique has been demon- 

strated by Kaiser and Nayfeh 55 for plane ducts with no-mean flow. 

The problem is formulated in the following section, the method of 

solution is presented in Section 3, the numerical solution is described 

in Section 4, the numerical results and discussion are presented in 

Section 5, and the conclusions are presented in Section 6. 



2. PROBLEM FORMULATION 

The transmission and attenuation of sound in hard- and soft-walled 

circular inlet ducts (Figure 1) carrying viscous or inviscid high sub- 

sonic mean flows is examined. The mean Mach number in the throat is 

near sonic; thus, the axial and radial gradients of the mean flow can be 

large. The cross section of the duct varies arbitrarily with the axial 

distance. 

The symbols used in the analysis are listed in Appendix A, except 

for a few which are used only where they are defined. All symbols are 

nondimensional unless specifically noted otherwise. Velocities, lengths, 

and time are made dimensionless by using the reference speed of sound 

ci (value in mean flow at x = 0 and r = 0), the radius R$ of the duct 

in the uniform region (Figure 1), and Rij/c?!, respectively. The pressure 

p is made dimensionless by using pact', the density p and temperature T 

are made dimensionless by using their corresponding reference values, 

while the viscosity p and the thermal conductivity K are made dimension- 

less by using their wall values in the uniform section. In terms of 

these dimensionless variables, the equations which describe the unsteady 

viscous flow in a duct are (see for example, Schlichting56). 

conservation of mass 

ap at + v ’ (p-;) = 0 

conservation of momentum 

conservation of energy 

p(g + -; l VT) - (v-1)(% + ; l Vp) 

= k [& v l (KVT) + (y-l)@] 

equation of state 

For a perfect gas, 

YP = PT 

(1) 

(2) 

(3) 

(4) 



For a Newtonian fluid, the dimensionless viscous-stress tensor z and 

the dimensionless dissipation function Q, are related to $ by 

1 = jl[vG + (vG)TJ + xv l G 

where (V$)T denotes the transpose of 6. 
In general, the ducts carry a high subsonic, steady, sheared mean 

flow that satisfies equations (1) through (4). The presence of sound in 

the ducts results in the perturbation of the flow quantities so that 

q(b) = qom + sJ,t) (5) 

where q stands for any flow quantity, q. is the mean-flow part, and q1 

is the acoustic part. Substituting equation (5) into equations (1) 

through (4) and eliminating the mean-flow quantities, one obtains the 

following acoustic equations: 

1 - vpl+ Re V l ~1 + NL (7) 

PO($+ Go l VT1 + '11 *VT,,) + plGo l VT0 - (v-l)@ 

+ Go ' VP1 + T;, l Vp0) = in [+& V l (K~VT~ + K~VT~) 

+ (Y - l)@l] + NL (a) 

P1,Pl+T1 
PO PO To (9) 

where z1 and @I are linear in the acoustic quantities and NL stands for 

the nonlinear terms in the acoustic quantities. 

No solution to equations (6) through (9) subject to general initial 

and boundary conditions is available yet. To determine solutions for 

the propagation of sound in ducts, researchers have used simplifying 

assumptions. Here, the nonlinear and viscous terms in the acoustic 



equations are neglected, and the mean flow is taken to be a function of 

the axial and radial coordinates only. Further, we neglect swirling 

mean flows. The assumption of linearization is not valid for high 

sound-pressure levels. The effects of the nonlinear acoustic properties 

of the lining material become significant when the sound-pressure level 

exceeds about 130 dB (re 0.0002 dyne/cm2), while the effects of the gas 

nonlinearity become significant when the sound pressure level exceeds 

about 160 dB. In particular, the nonlinearity of the gas must be in- 

cluded when the mean flow is transonic (i.e., near the throat 132) . 

Nayfeh57 showed that the viscous terms in the acoustic equations produce 

an effective admittance at the wall that leads to small dispersion and 

attenuation. For lined ducts, this admittance produced by the acoustic 

boundary layer may be neglected, but it cannot be neglected for hard- 

walled ducts, as demonstrated analytically and experimentally by Pestorius 

and Blackstock 58 . 
A cylindrical coordinate system (r-,6,x) is introduced as shown in 

Figure 1. Since there is no swirling flow, each flow quantity ql(r,x,8,t) 

can be expressed, for sinusoidal time variations, as 

qlhx,e,t) = y m=O qlmb-,xkxp[-i(wt - m@l (‘0) 

where w is the dimensionless frequency. Using the above assumptions, 

one can rewrite ecuations (6) through (9) in cylindrical coordinates as 

- iwpl + $y (POUl + UoPd -i- y w1 + +b (rpovl + rvopl) = 0 

(1') 

poC-iw + & (uoul) + v0 
au ---L + Vl $$q + p1[u, 2 + ar 

+ vo $Q] = - gl (12) 

po[-iwvl + $ (vovl) + u. %t u l ax *I + pJv, $+- + uo 21 

=-i22.L 
ar (13) 

pO[-iwwl + v. $ + ++-+ u0 2&q+!!p1 (14) 

10 



Po[-iwT1 + v. $+ u i?L 
O ax 

tvl~tu 
ar 1 $-I + PlCVO 2 

+ u" ax 61 - (y-1)[-iwpl + u0 $-+ VO F+ ul F 

+ 'l ar 
ape] = 0 (15) 

LQL,!--- 
PO PO 

(16) 

where u,v, and w are the velocities in the axial, radial, and azimuthal 

directions, respectively, and the subscript m has been suppressed. 

To complete the problem formulation, one needs to specify the 

initial and boundary conditions. The boundary conditions are based on 

the assumption that the duct wall is lined with a point-reacting acoustic 

material whose specific acoustic admittance B may vary along the duct. 

For no-slip mean flows, a requirement of continuity of the particle 

displacement gives 

Vl - R'ul = $ p1 Jl + r12 atr=R (17) 
ww 

where R' is the slope of the wall and the subscript w refers to values 

at the wall. The final results are desired in the form of transmission 

and reflection matrices 
59 for a given duct section; thus the initial 

conditions consist of the successive input of each acoustic mode at the 

duct entrance. 

11 
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3. METHOD OF SOLUTION 

3.1 Critique of the Existing Methods 

Since there is no exact solution available yet for equations (11) 

through (17) in ducts of varying cross sections, a number of approaches 

have been developed to determine approximate solutions to this prob- 
lem2W5 . These approaches include quasi-one-dimensional approxima- 

tions, solutions for slowly-varying cross sections, solutions for weak 

wall undulations, variational methods, approximation of the duct by a 

series of stepped uniform cross sections, and finite-difference and 

finite-element methods. A short critique of these approaches is in- 

cluded next (more detailed critiques are given in references 24 and 25), 

and it is followed by the proposed acoustic wave-envelope technique. 

In the quasi-one-dimensional approach, one can determine only the 

lowest modecin ducts with slowly-varying cross sections and cannot 

account for transverse mean-flow gradients or large wall admittance. 

In the slowly-varying cross-section approach, one can determine the 

transmission and attenuation for all modes including the effects of 

transverse as well as axial gradients, but the technique is limited to 

slow variations and the expansion needs to be carried out to second 

order to determine reflections of the acoustic signal. 

In the weak wall-undulation approach, one assumes that the dimen- 

sionless duct radius is described by R = 1 + ERR, where E is small. 

Thus, in this approach one can account for all effects except large 

axial variations. 

In the variational approach, one uses either the Rayleigh-Ritz 

procedure, which requires knowledge of the Lagrangian describing the 

problem, or the Galerkin procedure (the method of weighted residuals). 

Since the Lagrangian is not known yet for the general problem, the 

Galerkin procedure is the only applicable technique at this time. 

According to this procedure, one chooses basis functions (usually the 

mode shapes of a quasi-parallel problem) and represents the pressure, 

for example, as 

12 



~1 = j, p,(x)#,(r,x) (18) 

where the IJJ, are the basis functions which, in general, do not satisfy 

the boundary conditions. On expanding all flow variables in the form of 

equation (la), substituting the result into equations (11) through (17), 

and using the Galerkin procedure to minimize the error, one obtains 

differential equations describing the p,. Since the 9, do not satisfy 

the equations and the boundary conditions, a large number of terms are 

needed to satisfy the equations and the boundary conditions and hence 

represent the solution for large cross-sectional variations; this leads 

to serious convergence questions. These problems can be minimized by 

choosing the $, to be the quasi-parallel mode shapes corresponding to 

the propagation coefficients kn. The functions p,(x) vary rapidly even 

for a uniform duct: p,(x) = exp(ik,x), and k, can be very large for high 

frequency, low-order modes. Thus, small axial steps must be used in the 

computations, resulting in a large computation time, which increases 

very rapidly with axial distance and sound frequency. 

In approximating a duct with a continuously-varying cross-sectional 

area by a series of stepped uniform ducts, .a large number of uniform 

segments are needed to provide sufficient accuracy for the solution when 

the axial gradients are large. Thus, this approach is impractical in 

the present problem because an enormous amount of computation time is 

needed even for the case of a moderate number of uniform segments. 

This short discussion shows that the above techniques would cer- 

tainly either fail to produce sufficient accuracy for the present 

problem or would require large computation times. Thus, alternate tech- 

niques must be developed. The procedure to be developed has the further 

requirement that it be capable of calculating the transmission and 

reflection coefficients of the duct modes in order that the results be 
.59 compatable with the general approach developed by Zorumskl . The 

generation of transmission and reflection coefficients require repeti- 

tive calculations through the duct as each mode is considered succes- 

sively as input to the duct. For each such calculation, it is necessary 

to use very small axial and radial steps to represent the rapidly- 

varying mode shapes and the axial oscillations of each mode. (In fact, 

13 



a computational difficulty exists in calculating the higher-order Bessel 

functions that represent the mode shapes in a uniform duct carrying 

uniform mean flow unless asymptotic expansions are used.) The axial 

step must be much smaller than the wavelength of the lowest mode in 

order to be able to determine the axial variations. These small steps 

could cause the error in the numerical solution to increase very rapidly 

with axial distance. Thus purely numerical methods would be impractical 

because of the excessive amount of computation time. Similar problems 

have been encountered by astronomers who developed what is usually 

called the special perturbation method in which one solves only for the 

wave envelope instead of solving for the wave itself. Here we use this 

idea to develop a wave-envelope technique for solving the present problem. 

3.2 Form of Solution 

With this approach, one uses the method of variation of parameters 

to change the dependent variables from the fast-varying variables to 

others that vary slowly. Moreover, the solution is approximated by a 

finite sum of the quasi-parallel-duct eigenfunctions. 

Thus, we seek an approximate solution to equations (11) through 

(17) in the form 

+ An(xG~(r,x) x 

(19) 

+ ~nb&~hx) x 

(20) 

with similar expressions for vl, wl, T1, and pl, where the tilde refers 

to upstream propagation, the $,(r,x) are the quasi-parallel mode shapes 

corresponding to the quasi-parallel propagation coefficients k,(x), and 

the A,(x) are complex functions whose moduli and arguments represent, in 

some sense, the amplitudes and the phases of the (m,n) modes. The 

14 



circumferential mode number m is assumed to be specified and the corres- 

ponding subscript on A, IJJ, and k is not explicitly stated; each variable 

is expressed as a summation over a finite number of radial modes N, with 

n = 1 denoting the fundamental radial mode rather than the conventional 

n = 0. Since kn is complex, the exponential factor contains an estimate 

of the attenuation of the (m,n) mode. Thus, the envelope of the (m,n) 

mode is given by 

IA,(x) lw[-fi,,(x)dxl 
where cln is the imaginary part of kn. 

Since the $, are the quasi-parallel mode shapes, they are the solu- 

tions of the following problem: 

-jc$p + i kpoqU + hi!!! $' + 1 a 
r r s b-pod3 = 0 

- ip,i$' + p. 2 $J' + iQp = 0 

- -ip,L$' + ar iu!! = 0 

- jpo~7~W + p I.)~ = 0 

- ipOGJT + p. 2 qv + i(y-l)CQp = 0 

!LLti+$ 
PO PO 0 

4Jv - * 1~~=0atr=R 
ww 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

where A 
w=o- 

Equation (21 

kuo (28) 

) - (28) can be combined to yield the following prob 

.for qp: 

!$!! + [+ + 2 + l_kub] $ + $ _ k2 _ !$,$p = 0 (29) 

-iF$'=Ydatr=R (30) 
2 

W 

lem57 
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At each axial location, the solution of equations (29) and (30) yields 

$E(r;x) and its corresponding propagation coefficient k,(x). Since the 

basis functions $F(r;x)-vary in the axial direction, they must be 

normalized in some manner to provide significance to the axial varia- 

tions of the mode amplitudes. The normalization used in this study is 
.59. the same as that defined by Zorumskl . 

R 

I 
r[$E (r;x)]'dr = 1 

Then,'equations (21) - (26) are used to express the mode shapes of the 

other flow variables in terms of I$ and kn. 

3.3 Constraints 

Since the transverse dependence in the assumed solution, equations 

(19) and (20), is chosen a priori, it cannot satisfy equations (11) - 

(17) exactly. Thus, the assumed solution must be subjected to con- 

straints. Rather than using the usual method of weighted residuals 

which forces the residuals in each of the basic equations (11) - (16) 

and the boundary condition (17) to be orthogonal to some a priori chosen 

functions, we require the deviations from the quasi-parallel solution to 

be orthogonal to every solution of the adjoint quasi-parallel problem. 

This approach assures the recovery of the results of the method of 

multiple scales 32 when the axial variations are slow 55 . 

To enforce the contraints, one must define the problem adjoint to 

the quasi-parallel problem. To this end, one can multiply equations 

(21) - (26) by the functions $1, $2, @3, $4, $5, and $6, respectively, 

where the $,(r,x) are solutions of the adjoint problem, add the result- 

ing equations, integrate the result by parts from r = 0 to r = R thereby 

transferring the r-derivatives from the Q's to the a's, and obtain 
R 

/ 

R R 
h 

dT-iub - $dPoldr + 
/ 

ipo$'[- i$2 + k$,]dr + 
I 

poQvC- ii+3 
R 

0 

+$a2 - r a thy + e G5]dr + Rar r 
I 

-i po$'I- '6;h 

Jo ’ . 

+ &/Poldr + 
I 

t30~T13G~5 - Po&]dr + [PO$~& + $'@,I; = 0 

JO (31) 
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Then, the adjoint equations are obtained by setting each of the bracketed 

equation (31) to zero; that is 

(32) 

(33) 

terms in the integrands of 

iulpl + &ho = 0 

- G2 + kGl = 0 

-iG;$, +$$2 - rg 

- G% +;$)1=0 

iQ2 -at peIt t 
ar 

poii@5 + G6/T0 = 0 

($+) + 2 $5 = 0 (34) 

(35) 

ih-Gi5 + $6/po = 0 (36) 

(37) 

Equation (31) is reduced to 

bdh1 + $Pb),=O = bdh + $p$+R 
(38) 

From equations (32) - (35) and (37), one can express each of the $,, as 

a function of Q1: 

$2 = $ $1 (39) 

$3= (jj 
ir;o s$ ($L) (40) 

$4 =gp (41) 

$5 =e (42) 

$6 = - ipOk$l (43) 

Using equations (39)-(43) in equation (36), one then obtains the govern- 

ing equation for $I~: 

1 a r ar [$ $1 + [l - _Tok2 p--++$ll=o 

where 
+!? 

0 

(44) 

(45) 

It can be shown easily that equations (29) and (44) are the same; 

thus n and Qp satisfy the same differential equation. The boundary 

conditions on n are obtained from equation (38) by substitution for qv 

from equation (23), for $3 from equation (40), and for I$~ from equation 

(45). The result is 
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$Q c- $tl + $P $lrmR = $$Q [- J$ + $P $1 (46) 
r=O 

If one requires that n be bounded at r = 0, just as $p is, then the 

right-hand side vanishes. Using equation (30) to eliminate aQp/ar 

and noting that tip is arbitrary at r = R, one obtains 

aq iw6 
=-~1/2n=O atr=R 

W 

(47) 

Since the boundary condition (47) is the same as the boundary condition 

(30) 9 one can set n = Qp without loss of generality, and hence one does 

not need to solve the adjoint problem. One needs only to solve the 

quasi-parallel problem to determine $I: and then determine Gin from 

$ln 
fLd.f, 

=7 

according to Equation (45). 
(48) 

The remaining $'s are then determined from 

equations (39)-(43). 

Once the adjoint functions are known, the constraint conditions are 

determined as follows. On multiplying equations (ll)-(16) by c$~~,@~~,...,c$~~, 

respectively, adding the resulting equations, integrating the result bJV 

parts from r = 0 to r = R to transfer the r-derivatives tc the @Is, and 

using equations (32)-(37) and (17), one obtains the following constraint: 

R 

/I $1 
b,C-%k,,Pl - i$.,PoUl + a (poul 

ax 
+ uo~dl - rvopl 5 (+) 

0 

+ Gz,C- iuo$,wl - iknpl + p. ax ahAh) + pl(uo au, + v au,) 
ax Oar 

+ ax 
fi] - ill %( av, POVO@Z& + @3n[-iuok,pov, + pouo ax 

+ Paul 9 + PlbO $ + uo $,I - VOVl $y (Poh& 

+ ~~,.,~-ik,,pOuOwl + v + pouo $1 - w1 %( PoVoh& 

+ ~5,,C-iu0k,,p0T1 + (y-l)iuoknpl + pouo ax + poul e + & ZQ PICvO ar 

+ uo $1 - (Y-l)(uo $ + ~1 2 + vl $+,I - T1 g (povo~5 ) 

I 

n 

+ (Y-l)pl k (vo+5,,) dr + po@l[R'ul + 5 Pl(rn -111 = 0 
ww r=R 

18 



3.4 Equations Describing the Wave Envelopes 

Substitution of the assumed solution, equations (19) and (20), into 

equation (49) yields the following 2N equations for the A's: 

:I, fmn 2 = z!, gmnAn (50) 

where 
P 

f mn = c 

I 

~91,botJ~ + uodJ;1 + ~nmbouovJ~ + (1 + ~sm(PoUo4J~ 

+ hm~ouo~~ + hm(~ouo$~ - h-l)ud$Idrle 
ilkndx 

(51) 
R 

9 mn = - 
lu 

$~,[&(Po$~ + uo()l - rv0Vf & ($1 

+ Gr;rPo gy hov# + Q,R(uo 2 + v 
* 

ad-JP 

O ar 1 + -J.] 

wV 
ax 

- Icl; & (Povo~nm) + ~3mcPouo yj$ + Po# 2 

av 
+ @vo $ + u 

Povoq 
0 $91 - vovJ; j&L (Po$sm) + hmCy 

wW wT 
+ PoUo$-1 - 4J; & (PoVo~sm) + ~smCPoUo 7g + Po$i $ 

aT 
+ qvo $ + u 

wP 
0 2, - (y-l)(uo $ + l/J" @!J- + $; $)I 

n ax 

- $A s ~~~~~~~~~ + h-1 )( $Z (voG5m) + @lmi(kn - km) x 

(P~$J~ + uo() + @2mi(kn - k,HQ~ + POUO$$ + G3mi(kn 

- km)poUoJI~ + bmikn - k,huo$~ + bmikn - k,ho x 

(POVJ; - (rv-l)$E) 

J 1 

dr + PO@I,CR’$~ + 5 ww $; (4 1 + RIL 

-111 e 
i/kndx 

(52) 
r=R 

For convenience the upstream modes are now denoted by An, n = N + 1, 

. . . . 2N, i.e., 

AN+n = An n = 1,2,3,...,N 
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4. Numerical Solution 

The procedures which implement the solution of Section 3 are 

described here, along with the form in which the results are presented. 

4.1 Mean-flow Model 

To evaluate the coefficients fmn and gmn of the set of ordinary- 

differential equations for the mode amplitudes An, one must specify all 

mean-flow variables, u~,~~,T~,~~,v~ and their first partial derivatives 

with respect to both x and r. The form of g,, as given in Eq. (52) 

would also require some second derivatives; however, those terms in- 

volving second derivatives have been integrated by parts and the re- 

sulting expression for g, which requires only first derivatives of the 

mean flew, has been used in the numerical development. Any suitable 

method of solution for the mean flow can be used in conjunction with the 

acoustic program provided it is capable of supplying the variables and 

their first derivatives and provided it supplies velocity fields which 

satisfy the no-slip boundary condition at the wall. 

For the present study, a simplified model of the mean flow has been 

employed. This model uses one-dimensional gas-dynamics theory to des- 

cribe the mean-flow variables in the inviscid core; thus uO,pO,TO and p. 

are constant across the duct cross section except in the region of the 

wall boundary layer. The program permits one to select one of two 

options: the radial velocity v. can be set equal to zero, consistent 

with the one-dimensional theory, or the radial velocity can be calcu- 

lated to be a linear function of r, consistent with the mean-continuity 

equation and the flow tangency condition at the wail. The velocity 

profile in the wall boundary layer is taken to be a quarter-sine pro- 

file; that is, 

$- = sin[n(R - r-)/26] r 1 R - 6 
Ll 

(53) 
r<R-6 - 

The temperature profile is related to the velocity profile by 56 
T 

L=l+r, 
TC 

r-l ‘[I - (!!Ly] t WT 
2 Mc U (W 

C 

’ - ‘ad [l - ?] 

C C 

Tad/Tc = 1 + rl $!- Mi (54b) 
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where the subscript c refers to values in the inviscid core, Tw is the 

wall temperature, Tad is the adiabatic wall temperature, 6 is the bound- 

ary-layer thickness, rl is the recovery factor, and y = 1.4 is the ratio 

of the gas specific heats. The quarter-sine profile is a good approxi- 

mation for acoustic studies for cases of laminar mean flow 61 . 

The temperature-profile formula, Eq. (54), is a good approximation 

for laminar boundary layers in zero pressure gradients; in this case, 

the recovery factor rl is taken to be equal to Pr v ' for best results, 

although many boundary-layer studies have been based on r-1 = 1. Since 

the present study is concerned with variable-area ducts, the use of Eq. 

(54) should be considered a rough approximation only, providing the user 

with a means of checking the sensitivity of the results to changes in 

the mean-temperature profile. To this end, three options have been 

provided in the program for selection of the wall temperature: the wall 

temperature can be set to any specified constant value, it can be set 

equal to the inviscid core value, Tc, or it can be set equal to the 

adiabatic wall temperature, Tad. It is noted that if one selects the 

second option, Tw = Tc, and also sets rl = 0 (no aerodynamic heating) 

the mean temperature will be constant across the duct width and the 

temperature-profile refractive effect will be eliminated; this is of 

value for attempting comparisons with one-dimensional results or in- 

compressible mean-flow results. 

The axial variation of the boundary-layer displacement thickness 61 

is assumed to be known and is specified in the program by a simple 

polynomial variation: 

61/610 = Cl + bl(x/L) + bz(x/L)'lR (55) 
The displacement thickness and the Mach number within the uniform core 

have prescribed values, 610 and Mco, at x = 0; the subsequent axial 

variations of 6 and MC are calculated within the program from the defi- 

nition of displacement thickness and from mass-flow considerations. The 

one-dimensional gas-dynamics theory provides the axial variation of Tc, 

%’ uC’ 
etc. and the boundary-layer profiles are computed from Eqs. (53) 

and (54). Thus, the mean flow within the duct is prescribed completely 

by input of the values of McO, ~10,b1,b2,rl,y, and Tw to the program. 
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4.2 Wall Admittance 

The wall of the duct is assumed to be lined and two options are 

available to the user: the duct has a point-reacting liner of constant 

properties whose specific admittance is described by 

B= 
1 

1 
Re(l-iw/wo) + i cot(wd/Tw") 

(56) 

where Re is the resistance of a facing sheet, w. is the characteristic 

frequency of the facing sheet, and d is the depth of the backing cavi- 

ties in the liner; or the admittance of the liner can be taken to vary 

from a specified value B. at x = 0 to a specified value BL at x = L 

according to the expression 

B = Bo + (BL - f30)(3 - 2x/L)(x/L)2 (57) 

This latter expression gives a continuously varying admittance with 

dB/dx = 0 at both x = 0 and x = L. 

4.3 Parallel-Duct Eigenfunctions 

To calculate the changes in the amplitude of the acoustic wave 

first requires the eigenfunctions $,. The number of radial modes to be 

considered and the mode eigenvalues at x = 0 must be specified as input 

to the program. The quasi-parallel acoustic equations (29) and (30) are 

solved at each axial position by using a fourth-order Runge-Kutta 

forward-integration technique and by employing a Newton-Raphson pro- 

cedure to determine the eigenvalues kn. The accuracy of the Runge-Kutta 

procedure should assure good numerical results wit1 

points across the duct width. 

To determine the coefficients g,, of equation 

evaluate the axial gradients of the wavenumber, k, 

a minimum of grid 

functions $,. These axial derivatives ca 

ing equations (29) and (30) with respect 

by using a simple finite-difference quoti 

dk) ; k -k 

X 

x+AgAx x-Ax 

(521, one has to 

and of the eigen- 

i ned by differentiat- n be obta 

to the axial co-ordinate x, or 

ent such as 

(58) 
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Although the first approach is more elegant and inherently more accurate 

it is somewhat tedious to implement for this case and would lead to 

longer computation times. Thus the second approach is used even though 

it introduces truncation errors of order Ax2; convergence checks using 

calculations with different values of Ax have shown that this is not a 

problem. 

4.4 Numerical Integration 

The adjointpfunctions are found from the quasi-parallel-flow 

variables $p, $ , and k by using the relations (39)-(43). The coef- 

ficients fmn and g,, are then evaluated from equations (51) and (52). 

The integrals across the duct in these expressions are evaluated using 

Simpson's rule which yields a high level of accuracy. The axial inte- 

grals /kndx are evaluated with the trapezoid rule which is of sufficient 

accuracy to obtain good convergence with changes in Ax. 

Writing equation (50) in matrix form, FdA/dx = GA, and solving for 

dA/dx, one obtains 

dA = F-l@, 
dx (59) 

where A is a column vector whose elements are the A,. A Runge-Kutta 

forward-integration technique is used to solve equations (59) for the 

function A at each axial station. Since the problem is linear, one can 

determine the solution for any problem subject to general boundary 

conditions at the two ends of the duct by a linear combination of 2N 

linearly independent solutions. 

The linearly independent solutions are obtained by setting all mode 

amplitudes except one equal to zero at x = 0 and integrating equation 

(59) to x = L. One such integration for each of the 2N modes allows one 

to obtain the transfer matrices TR1, TR2, TR3, TRI, which are defined by 

B+(L) = TRIB+(0) + TRzB-(0) (60a) 

B-(L) = TR3B+(0) + TRbB-(0) (6Ob) 

where B+(x) is a column vector of the amplitudes Ane 
i/kndx 

of the 

right-running modes and B-(x) is a column vector of the amplitudes 

Ane 
iJf,.,dx 

of the left-running modes. The transfer matrices thus allow 
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one to calculate the complex mode amplitudes at x = L from those at x = 

0. Following reference 59, we derive results in the form of trans- 

mission and reflection coefficients for the variable-area segment being 

considered. The transmission and reflection coefficients relate the 

complex magnitudes of the outgoing modes to those of the incoming modes, 

B+(L) = TLyoB+(0) + RL'LB-(L) 

B-(O) = TogLB-(L) + RoyoB-(0) 

and are calculated from the transfer matrices by 55 

T”,L = TR;' 

R",O = - TRi1TR3 

&L = -1 TR2TR4 

TL,O = TRl + TR2Royo 

(62) 

The reflection coefficients are the negative of those defined in 

reference 59 as a consequence of the use of the positive sign on the 

$E term in equation (19). The (m,n) term of TL" represents the trans- 

mission of the m th radial mode at x = L due to the n th radial mode being 

incident at x = 0, etc. The requirement that the procedure be able to 

calculate these transmission and reflection coefficients makes a direct 

numerical procedure undesirable for this study. The wave-envelope, 

eigenfunction-expansion procedure developed in Section 3 is better 

suited to the the necessary repetitive calculations with each mode as 

input than a direct numerical approach would be. Further, it is noted 

that the transmission and reflection coefficients are general; no 

assumption about the nature of the source input to the duct has been 

made. 

4.5 Acoustic Pressure Profiles 

Although the procedure developed here is primarily intended to 

obtain transmission and reflection coefficients, the acoustic pressure 

distributions can be constructed if the input to the duct section is 

specified. Specifically, one must designate the values of B+(O) and B- 

(L) which are the amplitudes of the right-running modes that are in- 
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cident on the duct section at x = 0 and the amplitudes of the left- 

running modes that are incident on the duct section at x = L, respecti- 

vely. Equation (61b) then yields the value of B-(O). A generalization 

of equation (60), 

B+(x) = TRIB+(0) + TR2B-(0) 

B-(x) = TR3B+(0) + TR4B-(0) 
(63) 

where the transfer matrices are functions of the axial coordinate x, is 

used to calculate the mode amplitudes throughout the duct. The program 

has been constructed to store the necessary values of the transfer 

matrices. Finally, the pressure distribution across the duct at each 

axial position is obtained from equations (10) and (19) and the defini- 

tion of Bt and B-: 

pl(r,x,e,t) = F Bi(x)$(r,x) + nfl Bi(x)$(r,x) ei(me-wt) 
n=l I 

(64) 

where the bracketed terms describe the spatial distribution of interest. 

A similar expression is evaluated for the acoustic particle velocity 

(axial component) and the moduli and arguments of these quantities are 

output of the program. 

The accuracy of these acoustic pressure and velocity profiles de- 

pends on the accuracy of the eigenfunction-expansion procedure that 

forms the basis of this study. General guidelines are available from 

parallel-duct studies, for example, Hersh and Catton 62 and Unruh and 

Eversman63; eigenvalues and attenuation rates (transmission and reflec- 

tion coefficients in the variable-area case) converge more rapidly with 

an increasing number of basis functions than do the eigenfunctions 

(pressure profiles in the variable-area case). By using the parallel- 

duct eigenfunctions as the basis functions, we should minimize any 

convergence problems if all cut-on modes are included in the analysis; 

the magnitudes of any cut-off modes should be sufficiently small so as 

not to cause a large error. In addition, the integrability constraint 

developed in Section 3.3 assures that the governing equations are 

satisfied "on the average" at each cross section; that is, the average 
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error at any cross section will be zero even if an inadequate number of 

modes is used. Thus the overall characteristics of the duct such as 

transmission and reflection coefficients are more accurate than the 

details of the acoustic pressure distributions. 

4.6. Energy Flux 

When the acoustic pressure and velocity distributions are obtained, 

an evaluation of an energy-flux expression is possible. We have used 

the expression developed by Morfey 64 (and others) in the computer pro- 

gram developed for this study; the reader is cautioned, however, that in 

the presence of a mean flow with strong vorticity, the "acoustic energy" 

as defined by this expression is not conserved. Morfey points out that 

there are production terms present unless the mean flow is irrotational. 

Alternative expressions for the energy flux are also of questionable 

value for the current study. The expression developed by Eversman 65 

(and others) is restricted to uniform mean flows and the expression 

developed by M'dhring 66 while permitting rotational mean flows does not 

allow for mean flows in which vorticity is developed as the mean flow 

moves in the axial direction and thus is unsuitable for the variable- 

area cases of interest in this study. Whether any of these expressions 

are of value for studies of variable-area ducts with developing mean 

flows that have wall shear layers is questionable. For a few simple 

cases with no mean flow or low-speed mean flow any of the expressions 

provides a check on the validity of the method of solution and its 

computational implementation. 
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5. Sample Cases 

The computer program described in the previous section has been 

developed and used to provide a number of sample results. These sample 

results serve three purposes: to test the validity of the program and 

the method of analysis; to indicate the range of mean-flow and acoustic 

parameters for which the analysis is useful and simultaneously mark 

potential problems that may develop; and to provide a set of test cases 

that can be used by anyone who wishes to become familiar with the use of 

the program. To assist with this last requirement, each case contains a 

complete set of the input variables that were used to run the case. 

All cases were run in single precision on the IBM 370 at VPI&SU; 
many of them have also been checked with a version of the program 

implemented on the CDC Cyber 175 at Langley Research Center. In most of 

the test cases, the duct radius is assumed to have a simple converging- 

diverging variation with axial distance: 

R = 1 + a2[-1 + cos(2~rx/L)] (65) 

where a2 specifies the magnitude of the variation in the outer wall and 

L is the length of the duct. If one wishes to consider only a con- 

verging (or diverging) duct, the program allows the calculations to be 

terminated at x = L/2. For other geometric variations, one must alter 

the geometry subroutine in the program; these alterations are simply 

accomplished, and one set of cases included here requires such changes. 

5.1 Definition of Input Variables for the Program 

To permit the reproduction of the results contained in subsequent 

sections, the Fortran variables used as program input and, when appro- 

priate, their correspondence to the variables used in the analysis are 

defined here: 

Variables that define the mean flow 

Fortran Variable Definition 

XMCO M co, Mach number at the duct entrance 

GAM y, Ratio of specific heats 
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RCF 

DISP20 

B2,B3 

CWT 

NTEMP 

NRADVL 

A2 

XF 

NCUT 

RE 

wo 

DIS 
BETA0 

BETAL 

W 

M 

NM 

rl, Recovery factor 

&lo, Displacement thickness at x = 0 

blrbz, Coefficients in eq. (55) describing the 

displacement thickness variation 

Constant value of the wall temperature 

= 1, Tw = CWT 

= 2, Tw = Tad 

= 3, Tw = Tc 

= 0 for zero radial velocity 

= 1 for linear variation of the mean radial 

velocity 

Variables that define the duct properties 

a2, Coefficient that determines the magnitude 

of the variation in the duct radius 

L, the duct length 

= 1, Calculations for the full converging, 

diverging section are carried out 

= 2, Calculations for only the converging 

portion of the duct are considered 

Re' Liner resistance 

wo, Characteristic frequency of the liner 

d, Cavity depth of the liner 

Bo, Liner admittance at x = 0; used only if 

RE = 0 

BL, Liner admittance at x = L; used only 

if RE = 0 

Variables that define the acoustic signal 

w, Circular frequency 

m, Circumferential mode number 

2N, The total number of parallel-duct modes to 

be used in the calculations 
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IVK 

ERR 

NSC 

NSB 

NOS 

NSS 

The initial approximations for the eigen- 

values of the parallel-duct modes at 

x = 0; an array. 

The error bound for convergence of the itera- 

tions for the parallel-duct eigenvalues 

Variables that define the numerical procedure 

The number of steps across the duct in the 

uniform mean flow core; must be an even 

number 

The number of steps across the duct in the 

mean-flow boundary layer; must be an 

even number 

The number of axial segments into which the 

duct length is divided. Flow variables 

and acoustic profiles are printed at the 

end of each segment. 

The number of axial steps that each segment is 

sub-divided into; must be either 2 or 4. 

Ax = l/(NOS NSS) 

Variables that control output 

A number of variables may be printed at the end of each duct seg- 

ment to serve as diagnostic tools should a problem with the program 

develop. Each of the following parameters is set to zero if the corres- 

ponding printout is not desired and set to unity if it is desired. 

NRITR Prints the initial iterations on the 

parallel-duct eigenvalues at x = 0 

NREGN Prints the converged values of the parallel- 

duct eigenvalues at the end of each 

segment. 

NRAMP Prints the amplitudes of each duct mode 

at the end of each duct segment. 
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Variables for calculating the acoustic pressure profiles 

NINPCS 

BP0 

BML 

Specifies the number of cases for which 

the acoustic pressure and velocity 

distributions are to be calculated 

B+(O); Mode amplitudes of the right- 

running modes at x = 0; an array 

B-(L); Mode amplitudes of the left- 

running modes at x = L; an array 

5.2 Symmetry Checks 

Testing of the method of solution is somewhat difficult since there 

are no available solutions for acoustic propagation through variable- 

area ducts carrying a high-speed, compressible mean flow, except for 

some one-dimensional solutions. However, a few tests can be conducted 

for simple flows to determine internal consistency of the program. 

For straight, uniform ducts, the wave-envelope amplitudes are 

correctly calculated to be constant throughout the duct, and the routine 

for solving the parallel-duct eigenfunctions and eigenvalues produces 

the expected results. In addition, a number of checks on the trans- 

mission and reflection coefficients have been performed for both straight 

and variable-area ducts with and without liners and with and without 

mean flows. A few of these symmetry checks are presented here. 

(a) Straight, lined duct with no mean flow. 

Since the duct is uniform, the reflection coefficients should be 

identically zero, and the off-diagonal terms of the transmission ma- 

trices should be zero; further, TLyo should be equal to ToyL because the 

left-running and right-running modes are identical. Results for the 

transmission and reflection coefficients for one such case are 

TL,O = T",L = 
-.241041 - .781958i .000014 + .000012i 

-.000022 - .000018i .551753 + .671203i 1 
R”,O = RL,L = 

c 

.OOOOOO - .OOOOOOi .000002 + .OOOOOli 

-.000003 - .OOOOOli .OOOOOO + .OOOOOOi 1 
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The expected results are achieved to a suitable degree of accuracy with 

errors in the intermodal coupling being larger than those in reflection 

of the modes. The input data for this case are W = 5, M = 0, NM = 4, 

IVK = 5.35 + O.li, 3.58 + .07i, - 5.35 - O.li, -3.58 - .07i, ERR = 

lo-4, XMCO = 0.0, GAM = 1.4, RCF = 1.0, CWT = 1.0, NTEMP = 1, DISP20 q 

.Ol, B2 = B3 = 0.0, NRADVL = 0, A2 = 0.0, XF = 2.0, NCUT = 1, RE = 0.8, 

WO = 15, DIS = .05, NSC = 16, NSB = 2, NOS = 20, NSS = 2, NINPCS = 0. 

Note that one must specify a non-zero boundary-layer thickness which, 

for cases of no mean flow, is strictly an expedient for setting up the 

numerical steps across the duct. In this case the number of steps in 

the "boundary layer" is set to the minimum possible value since the 

"boundary-layer thickness" is small. 

(b) Variable-area lined duct with no mean flow. 

In this case, reflection and intermodal coupling in the transmis- 

sion coefficients is expected to be non-zero; however, the symmetry of 

the situation still requires T O,L = TL30 and Rosa = RLvL. For one such 

case, the results are 

-p = -.17802 - .63795i -.33815 - .16619i 

-.50851 - .2493Oi .57103 - .24494i 1 
-.17803 - .63804i -.33818 - .16623i 

To,L = 

- .50856 - .24936i .57110 - .24497i I 

Errors are typically in the fifth decimal place with the maximum error 

in the fourth decimal place. The reflection coefficients agree to five 

decimal places, and 

R",O = 
.00426 + .01666i - .03609 + .04866i 

.05460 + .073OOi - .14420 - .14625i 1 
The input data for this case are the same as those in part (a) except 

that A2 = 0.1. 
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(c) Variable-area lined duct with mean flow 

In this case the transmission coefficients T L,O for a case when 

M > 0 (mean flow from left to right) should be the same as the coeffi- 

cients T"'L for a case when M < 0 (mean flow from right to left) pro- 

vided all duct properties and the mean flow are symmetric about x = L/2. 

Similar arguments can be made for the reflection coefficients. An 

example of such results yields 

for MC0 = - 0.3, 

TL,O = 
.51771 + .29426i 

.38645 - .31743i 

and for M = - 0.3 
co 

.37739 - .27368i 

-.06760 + .36536i 1 
T”,L = .51790 + .29418i .37744 - .27382i 

.38650 - .31753i -.06748 + .36548i 1 

The agreement between T o'L for MO = - 0.3 and TL" for MO = + 0.3, is 

comparable to that shown above and the agreement for reflection coeffi- 

cients is better. The results are relatively insensitive to changes in 

the error bound on the eigenvalues of the parallel duct; changes in the 

numerical step sizes will alter the values of the transmission coeffi- 

cients but do not change the general conclusions concerning the self 

consistency of the results. Since the largest errors are in the fourth 

decimal place, the results are considered to be satisfactory. 

The input data for the above results for TLyo are W = 10, M = 0, NM 

= 4, IVK = 7.2+.08i, 5.3t.221, -13.9-.04i, -12.3-.20-i, ERR = 10B4, 

XMCO = 0.3, GAM = 1.4, RCF = 1.0, CWT = 1.0, NTEMP = 1, DISP20 = .Ol, B2 

= B3 = 0.0, NRADVL = 0, A2 = 0.12, XF = 2.0, NCUT = 1, RE = 0.8, WO = 

15, DIS = .05, NSC = 16, NSB = 8, NOS = 20, NSS = 2, NINPCS = 0. For 

calculating T OyL the input data was the same except for XMCO. = -0.3, 

and IVK = 13.9 + .04i, 12.3 + .2Oi, -7.2-.08i, -5.3-.22i. The mean flow 

Mach number in these cases reaches a value of .61 at the throat of the 

duct, sufficiently large that compressibility effects in the mean flow 

are important. 
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5.3 Comparison with one-dimensional theory 

For a one-dimensional mean flow and acoustic disturbance, results 

are available in the literature; for example, Myers and Callegari' 

use such calculations to indicate the singular behavior of linear acoustic 

theory as the mean Mach number approaches unity. For their calcula- 

tions, the duct area is described by a polynomial 

R2 = $ [J + 8(f _ ;j2 _ 16(; _ ;,41 
and results are presented in the form of the ratio of the acoustic pres- 

sure amplitude to the incident pressure amplitude as a function of 

distance through the duct. 

The wave-envelope method clearly is not a one-dimensional model; 

however, as many two-dimensional effects as possible have been sup- 

pressed to effect the closest possible agreement between conditions in 

the one-dimensional calculations and the wave-envelope calculations. 

Only one mode propagating in each direction is included, and the duct 

wall is taken to be rigid. The boundary-layer displacement thickness is 

* set to a very small value (.OOl) in an attempt to minimize any refrac- 

tive effects on the acoustic signal. In order to obtain the same axial 

variation of the mean flow in both calculations, the radius of the duct 

for the wave-envelope calculations has been taken to be 

R= 
I 

$1 + 8(f - ;)' - 16(f _ $41 
I 

l/2 + 61 

and the displacement thickness is taken to be constant 

61 = 610 = .OOl 

These expressions require that the geometry subroutine of the program be 

altered if one wishes to reproduce the results of this section. To 

suppress two-dimensional effects, the mean radial velocity has been set 

to zero; the wall temperature is taken to be equal to the value at the 

centerline and the recovery factor has been set to zero in order to 

eliminate any refractive effect from a transverse temperature gradient. 

Despite .these restrictions, the wave-envelope method is still basically 

two dimensional: for example, the acoustic particle velocity normal to 

the wall is required to be zero whereas a one-dimensional model is 

equivalent to a zero acoustic velocity normal to the duct centerline. 

33 



Hence it is of interest to examine the differences between the results 

of the two approaches. In general, it has been found that the magnitude 

of the acoustic pressure is larger near the throat of the duct than is 

predicted by one-dimensional theory, especially when the throat Mach 

number is large. In addition, as the throat Mach number reaches high 

subsonic values, a substantial refractive effect develops, even from the 

very small boundary layer that was used in this study. An example of 

these effects is shown in Fig. 2. The converging duct section results 

in a higher acoustic pressure in the throat region than is predicted by 

one-dimensional theory. The incident signal at x = 0 propagates down- 

stream, and an upstream wave is present as a consequence of reflection 

within the variable-area duct. In the throat region the upstream wave 

has a very short wavelength and thus the boundary layer produces a 

significant refraction of the upstream wave toward the duct centerline. 

The acoustic propagation in the throat region is not a one-dimensional 

process. 

The effect of removing some of the "one-dimensional" restrictions 

has been examined. The results of Fig. 3 have been obtained with a 

constant wall temperature throughout the duct, Tw = 1.0; thus the wall 

is hotter than the mean flow in the vicinity of the throat and a temper- 

ature-profile refractive effect occurs. This results in a further in- 

tensification of the acoustic pressure in the throat region. Finally 

the influence of a mean radial velocity has been included, and the 

results are shown in Fig. 4. The mean radial velocity component has a 

strong effect on the acoustic pressure, reducing the pressure amplitude 

at the throat and bringing the two-dimensional results into closer 

agreement with one-dimensional theory than occurred in the two previous 

cases. Input data for reproducing the case in Fig. 2 are W = 1.009, M = 

0, NM = 2, IVK = 7.77 + O.Oi, -14.38 + O.Oi, ERR = 10B3, XMCO = .299, 

GAM = 1.4, RCF = 0.0, NTEMP = 3, DISP20 = .OOl, NRADVL = 0, XF = 1.0, 

NCUT = 1, RE = 0.0, BETA0 = 0.0 + O.Oi, BETAL = 0.0 + O.Oi, NSC = 14, 

NSB = 10, NOS = 40, NSS = 2, NINPCS = 1, BP0 = l//2, 0.0, etc., BML = 

0.0. For Fig. 3, the data are the same except that NTEMP = 1 and CWT = 

1.0. Finally the results in Fig. 4 have the same input data as those 

for Fig. 3 except that NRADVL = 1. 
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5.4 Comparison with Finite-Element Results 

A number of test cases have been set up for comparing the results 

of the wave-envelope procedure with the results from the finite-element 

procedure developed by Abrahamson 54 . The finite-element results have 

been supplied by H. Lester of Langley Research Center. Currently, 

comparisons have been made for two of the cases, and additional ones are 

being carried out. 

The finite-element method was developed for a compressible mean 

flow, but is currently implemented with an incompressible model; hence 

the cases chosen for comparison are for low-speed mean flows or for no 

mean flow. The mean flow varies from M = -0.1 at x = 0 to M = -.158 

at the throat, and the mean boundary-layer thickness is assumed to be 

10% of the local duct radius; the wave-envelope solution is based on a 

uniform mean temperature distribution across the duct. The wave-envelope 

method specifies the mode amplitudes incident on the duct section at x 

= 0, specifies no input at x = L and solves for the acoustic pressure 

distribution throughout the duct. The pressure distribution that re- 

sults at x = 0 is used as input for the finite-element program, which 

specifies a poco impedance at x = L to approximate the no-input boundary 

condition at that station. The pressure profiles from the two methods 

at x/L = l/4, l/2, 3/4 and 1, as well as the axial variation of the 

pressure at the wall, are then compared. 

The two cases currently available correspond to an input signal of 

500 Hz in a 2-meter-diameter rigid duct with the mean speed of sound 

being 344.4m/sec. These conditions yield a dimensionless circular fre- 

quency of w = 9.12 at which there are three cut-on modes propagating in 

each direction. The comparison for no mean flow is shown in Fig. 5. 

The incident signal at x = 0 is the fundamental, plane mode and reflec- 

tion in the duct results in the acoustic distribution shown in the left 

portion of the figure. Considerable variation of the acoustic profiles 

takes place as the signal propagates through the duct. The trends from 

the two methods of solution are the same, and the results agree reasonably 

well except at the center of the duct near the throat. The variation of 

pressure along the outer wall is also quite pronounced, and both methods 
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yield the same trends: the peak magnitude occurs ahead of the minimum 

area and a local minimum in pressure occurs close to the minimum area. 

Although the agreement is not exact, overall it is very satisfactory. 

The transmission coefficient TLyo and reflection coefficient R 030 

for this case are 

.823-.519i .106-.04Oi .085-.114i 
TLVo = .118-.045i -.703-.532i .085+.361i 

.135-.18li .121+.514i -.342+.727i 1 
and 

[ 

.003-.012i .010+.018i -.049+.014i 
R",O = .011+.02Oi -.027-.015i .058-.067i 

-.077+.02li .082-.094i .276+.18Oi 1 
The intermodal coupling coefficients (the off-diagonal terms of TLyo) 

are an order of magnitude larger than the reflection coefficients, and 

it is this coupling between modes that is primarily responsible for the 

variations of the acoustic profiles throughout the duct. Despite the 

small values of the reflection coefficients, they have a noticable 

effect on the acoustic pressure distribution as seen in Fig. 5 by 

comparing the incident signal with the total signal at x = 0. The input 

data to reproduce this result are W = 9.12, M = 0, NM = 6, IVK = 9.12, 

8.28, 5.83, -9.12, -8.28, -5.83, ERR = 10-3, XMCO = 0.0, GAM = 1.4, RCF 

= 0.0, NTEMP = 3, DISPZO = .0363, 02 = 03 = 0.0, NRADVL = 0, A2 = 0.1, 

XF = 2.0, NCUT = 1, RE = 0.0, BETA0 = BETAL = 0.0, NSC = 20, NSB = 2, 

NOS = 16, NSS = 2, NINPCS = 1, BP0 = l/Jz, 0.0, etc. 

A similar comparison has been made when the input signal propagates 

upstream against the mean flow. The results are shown in Fig. 6 and are 

very similar to those for no mean flow. The mean boundary layer causes 

a refraction of the disturbance away from the duct wall as expected; the 

differences between the finite-element and wave-envelope results are 

very large in the throat region near the duct centerline but otherwise 

are comparable to those found in the case without flow. Both methods 

"conserve energy" to a suitable level of accuracy. The transmission 

matrix TLyo is 
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-.314+.909i -.045+.113i -.003+.19Oi 
TL,O = -.050+.124i .816+.087i -.329-.335i 

-.005+.286i -.449-.457i -.050-.763i 
I 

Again the intermodal coupling in transmission is quite strong. Input 

data for reproduction of the results are the same as those for the no- 

mean-flow case, except for XMCO = -0.1, NRADVL = 1, NSB = 8, and IVK = 
10.13, 9.29, 6.85, -8.29, -7.45, -5.01. 

At a frequency of 1000 Hz or w = 18.24, there are six cut-on modes 

at the entrance, but the sixth mode cuts off within the duct. This 

situation presents difficulties for the wave-envelope calculations since 

it breaks down at a hard-wall cut-off point; it is also noted that if 

the sixth mode is not well cut on the poco impedance used as a boundary 

condition at x = L in the finite-element program may not be adequate. 

The breakdown of the wave-envelope method at hard-wall cut off is the 

major restriction on the use of the wave-envelope procedure. The re- 

sults can be obtained with only five modes, but one would expect this to 

introduce errors. Thus, the wave-envelope procedure is better suited 

for lined ducts than it is for rigid ducts. 

5.5 Straight Ducts with Variable Liners 

Several cases have been considered for wave propagation through a 

straight duct in which the wall admittance varies from zero at x = 0 to 

BL = 0.6 + 0.6i at x = L. Other conditions are basically the same as 

those discussed in Section 5.4, and ultimately a comparison of these 

results with the finite-element results will be made. Two results are 

given here, for w = 9.12 and w = 18.24, both for an incident signal at 

x = 0 that consists of two modes propagating upstream. In these cases, 

the reflection coefficients are so small that they do not affect the 

acoustic profiles. The results for the lower frequency are shown in 

Fig. 7 and those for the higher frequency in Fig. 8. The refraction of 

the signal away from the wall due to the upstream propagation is more 

pronounced in the high-frequency case. The acoustic amplitude along the 
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wall is reduced significantly as the wave propagates through the duct, 

but the reduction in energy flux is small in both cases (1.46dB and 

.34dB). The main effect of the variable liner properties is to couple 

the modes in transmission as shown by the transmission matrix for w = 

9.12: 

[ 

.448+.782i .333+.052i .007+.024i 
TLYo = -.185+.132i .307-.632i -.158+.0621 

-.001+.02Oi -.008-.058i .434-.lOOi I 

The first two modes interact strongly, whereas only small amounts of the 

third mode are generated by the presence of the first two. Input data 

for the low frequency case are W = 9.12, M = 0, NM = 6, IVK = 10.13, 

9.29, 6.85, -8.29, -7.45, -5.01, ERR = 10-3, XMCO = -0.1, GAM = 1.4, RCF 

= 0.0, NTEMP = 3, DISP20 = .0363,02 = 03 = 0.0, NRADVL = 1, A2 = 0.0, XF 

= 2.0, NCUT = 1, RE = 0.0, BETA0 = 0.0, BETAL = 0.6 + 0.6i, NSC = 20, 

NSB = 8, NOS = 16, NSS = 2, NINPCS = 1, BP0 = l/n, O.l-0.2i, 0, etc., 

BML = 0.0. The higher frequency corresponds to W = 18.24, IVK = 20.27, 

19.86, 18.86, 17.17, 14.5, 9.93, -16.58, -16.17, -15.18, -13.48, -10.81, 

-6.25, with all other data the same as in the low frequency case. 

5.6 General, Axisymmetric Case 

A case is examined in which the incident signal propagates down- 

stream in a converging-diverging duct in which the mean flow reaches a 

Mach number of .465 at the throat and the boundary-layer thickness grows 

rapidly downstream of the throat. In addition, the duct is lined with 

a variable-admittance liner, changing from B. = .5-.2i to BL = .2-.li. 

It is assumed that the mean flow has reached adiabatic conditions with 

the duct walls: Tw = Tad. The basic physical properties are defined by' 

a 1000 Hz signal propagating in a duct whose diameter varies over a 

60.96 cm (2') axial distance from 30.48 cm (1') at the entrance to 25.4 cm 

(10") at the throat. Using co = 335.28 m/set. (1100 ft/sec), one 

obtains w = 2.86, a frequency at which only one cut-on mode propagates 

in each direction. The transmission and reflection coefficients for 

this case are 

38 



+-So = .0683-.1636i 
T”,L = -.0007+.0002i 
R",O = -.0023-.0022i 
RL,L = -.0004+.OOOli 

Substantial reduction of the acoustic signal occurs in this case as 

shown by the small magnitudes of the transmission coefficients. An 

upstream-propagating signal would be almost eliminated. For the first 

right-running mode incident at x = 0, the pressure profile at x = L also 

is quite small compared to that at x = 0, as shown in Fig. 9; the energy 

flux is reduced by approximately 15.3dB. Input data for this case are 

W = 2.86, M = 0, NM = 2, IVK = 2.7t.481, -3.16-.76i, ERR = 10m3, XMCO = 

0.3, NRADVL = 1, GAM = 1.4, RCF = 0.8, NTEMP = 2, DISP20 = .02, 02 

= -2, 03 = 4, A2 = .08333, XF = 8.0, NCUT = 1, RE = 0.0, BETA0 = 0.5-0.2i, 

BETAL = 0.2-O.li, NSC = 16, NSB = 8, NOS = 25, NSS = 4, NINPCS = 1, BP0 

= l/J?, 0.0, etc., BML = 0.0. 

5.7 Spinning-Mode Case 

All the previous sample calculations considered axisymmetric 

acoustic waves. The program also can be used to study cases involving 

spinning modes as illustrated by a case for m = 2. The input signal of 

frequency w = 7 propagates downstream in a variable-area duct with 

constant liner properties. The acoustic pressure profiles at several 

axial positions along with the wall pressure variation are shown in Fig. 

10; these profiles correspond to the lowest radial mode being incident 

at x = 0 and are calculated with the two cut-on radial modes propagating in 

each direction. Transmission and reflection coefficients in this calcu- 

lation are 

$8 = 

r 

.475+.097i -.030-.066i 

-.078-.144i .013+.0623 I 

Rod = .008-.026i .108+.Olli 

.257+.03li .336+.567i 1 
It is seen that the second downstream mode is strongly reflected into 

two upstream-propagating modes with relatively little of the mode 
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passing through the duct section. This effect is not seen in Fig. 10 

since it corresponds to the case when only the lowest mode is incident 

on the duct section. Input data for these calculations are W = 7.0, M = 

2, NM = 4, IVK = 6.4+.32i, 2.47+.251', -8.4-.63i, -4.04-.28i, ERR = 

10-3, XMCO = 0.1, GAM = 1.4, RCF = 0.0, NTEMP = 3, DISP20 = .0363, 02 = 

0.5, 03 = 0.5, NRADVL = 1, A2 = 0.1, XF = 2.0, NCUT = 1, RE = 0.8, WO = 

15.0, DIS = .05, NSC = 20, NSB = 8, NOS = 16, NSS = 2, NINPCS = 1, BP0 

n l/n, 0.0, etc., BML = 0.0. 

The numerical solution for the parallel-duct eigenfunctions and 

eigenvalues can be expected to become increasingly inaccurate as the 

spinning mode number increases. For m L 5 some caution should be used 

and for m > 10 numerical difficulties and inaccuracies are to be ex- - 
petted. These high spinning modes will require an asymptotic expan- 

sion technique for accurate computation. 

5.8 Convergence of Results with Number of Modes 

It has been previously stated that one expects the results to be 

accurate if all cut-on modes are included in the calculation. In this 

section, a case for w = 18 is considered in which there are six cut-on 

modes in each direction. Calculations are made with fewer modes in 

order to check the convergence of the results as the number of modes is 

increased. The case discussed here is a straight duct with no mean flow 

and lined with a variable-admittance liner. Figure 11 shows the various 

approximations to the pressure profile at x = L/2 for the case when the 

lowest mode is input at x = 0. It is seen that convergence is slowest 

at the duct centerline, fastest at the wall, and that changes are quite 

pronounced across the entire duct for the first four modes. Addition of 

the fifth and sixth modes produces small changes (this would not be true 

if the input signal contained significant amounts of these modes). In 

contrast, the transmission coefficients converge more rapidly as shown 

in Table 1. With four modes, the transmission coefficients of all the 

modes that can be calculated are accurate. The coefficient of the 

lowest mode is the slowest to converge. Input data for calculations of 

these cases are W = 18.0, M = 0, IVK = 18.0, 17.59, 16.58, 14.85, 12.11, 
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7.26, -18.0, -17.59, -16.58, -14.85, -12.11, -7.26, ERR = 10-3, XMCO = 

0.0, GAM = 1.4, RCF = 0.0, NTEMP = 3, DISP20 = .0363, 02 = 03 = 0.0, 

NRADVL = 0, A2 = 0.0, XF = 2.0, NCUT = 1, RE = 0.0, BETA0 = 0.0, BETAL = 

0.6 + 0.6i, NSC = 20, NSB = 2, NOS = 16, NSS = 2, NINPCS = 1, BP0 = 

l/a, 0.0, etc., BML = 0.0. The value of NM changes from 2 to 12 as the 

number of modes is changed. 
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TABLE 1. Effect of increasing the number of modes on the 

convergence of the transmission coefficients. 

N TL,O 
11 

TL,o 
12 

TL,o 
13 

1 -.323-.907i 

2 -.251-.828i -.291-.349i 

3 -.238-.825i -.309-.35Oi .080+.017i 

4 -.236-.826i -.311-.348i .081+.012i 

5 -.236-.827i -.311-.348i .081+.012i 

6 -.236-.827i -.311-.348i .081+.012i 

TL,O 
14 

TL,o 
15 

TL,O 
16 

1 

2 

3 

4 -.012+.Olli 

5 -.Oll+.Olli .OOl-.003i 

6 -.Oll+.Olli .OOl-.003i .0005+.0001i 
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6. Summary 

An acoustic theory is developed to determine the sound transmission 

and attenuation through an infinite, hard-walled or lined circular duct 

carrying compressible, sheared, mean flows and having a variable cross 

section. The theory is applicable to large as well as small axial 

variations, as long as the mean'flow does not separate. The technique 

is based on solving for the envelopes of the quasi-parallel acoustic 

modes that exist in the duct instead of solving for the actual wave, 

thereby reducing the computation time and the round-off error encountered 

in purely numerical techniques. The solution recovers the solution 

based on the method of multiple scales for slowly varying duct geometry. 

A computer program has been developed based on the wave-envelope 

analysis for general mean flows. The mean-flow model consists of a one- 

dimensional flow in an inviscid core and a quarter-sine profile in the 

boundary layer. Mean radial velocity effects can be included. Numeri- 

cal calculations performed for waves propagating in uniform ducts 

carrying fully-developed mean flows agree with the well-known results 

for uniform ducts. For non-uniform ducts, results are presented for the 

reflection and transmission coefficients as well as the acoustic pres- 

sure distributions for a number of conditions: both straight and vari- 

able area ducts with and without liners and mean flows from very low to 

high subsonic speeds are considered. The results for transmission and 

reflection coefficients are shown to possess symmetry characteristics in 

those cases for which it is expected. Comparisons with the results of a 

finite-element analysis for low-speed mean flows have shown reasonable 

agreement. Comparisons with one-dimensional results for high-speed mean 

flows have shown strong two-dimensional effects occurring near the duct 

throat. A number of test cases that demonstrate the flexibility of the 

program are included. Convergence of the transmission coefficients and 

of the acoustic pressure profiles with an increasing number of modes is 

illustrated. 

The only limitation of the wave envelope technique is that it is 

not suitable near cut-off, since the coefficient multiplying the term 

dA,,/dx approaches zero. This problem is more apparent for a hard wall 

duct than for a soft wall duct, because k is exactly zero for a hard 
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wall duct. Near cut off, the problem requires a turning-point analysis 

using either the method of multiple scales or the Langer transformation 
32 

. 

In addition, in a duct with very large axial gradients, such as occur in 

the throat region as M -f 1, small axial steps may be required to assure 

that the program obtains an independent set of parallel-duct eigenfunc- 

tions to serve as basis functions. If two of the eigenvalues are the 

same an ill-conditioned matrix results and the program terminates. 
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APPENDIX A 

Symbols and Notation 

Symbol 

a2 

A 

A --n 

An 
bl ,b2 

B+ 

B- 

C 

cP 
d 

f mn 

F 

9 mn 

G 

i 

kn'kn 

L 

m 

M 

MO 

N 

P 
Pr 

Coefficient that specifies the minimum duct radius in Eq. 

(65) 
Vector of mode amplitudes; 2N components 

Amplitude of the nth right-running mode 

Amplitude of the n th left-running mode 

Coefficients in the expression for the axial variation 

of the mean boundary-layer displacement thickness, 

Eq. (55) 
Vector of local amplitudes of the right-running modes; N 

components; n lzh component = Anexp(ilkndxl 

Vector of local amplitudes of the left-running modes; N 

components; n lzh component = A,,expIiik,,dxl 

Speed of sound, c*/ci 

Specific heat at constant .pressure 

Cavity depth of liner 

An element of one of the coefficient matrices in the 

governing equation for the mode amplitudes, Eq. (50) 

Coefficient matrix whose components are fmn 

An element of one of the coefficient matrices in the 

governing equation for the mode amplitudes, Eq. (50) 

Coefficient matrix whose components are g,, 

d -1 

Complex propagation coefficients of the nth right-running 

and left-running parallel-duct modes, respectively. 

Duct length, L*/Rb 

Circumferential mode number 

Mach number of mean flow 

Mach number of mean flow at x = 0 

Number of parallel-duct modes propagating in each direction. 

Pressure, p*/pici2 

Prandtl number, ~$C;/K; 
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9 
-f 
r 

r 

rl 

R 

Re 
Re 

,'$,L 

t 

T 
-$,O 

T",L 

T ad 

An arbitrary physical variable 

Position vector, i?*/R$ 

Radial co-ordinate, r*/RB 

Recovery factor used in Eq. (54) 

Duct radius, R*/R8 

Resistance of the liner facing sheet 

Reynolds number, pic,*R$/p; 

Duct radius at x = 0 

Reflection coefficient matrix at x = 0 for modes inc 

at x = 0; defined by Eq. (61) 

Reflection coefficient matrix at x = L for modes inc 

at x = L; defined by Eq. (61) 

Time, t*ci/R$ 

ident 

ident 

Temperature, T*/T; 

Transmission coefficient matrix at x = L for modes inci- 

dent at x = 0; defined by Eq. (61) 

Transmission coefficient matrix at x = 0 for modes inci- 

dent at x = L; defined by Eq. (61) 

Adiabatic wall temperature; defined by Eq. (54b) 

TRl ,TR2 ,TR3 ,-% Transfer matrices defined by Eq. (60) 

U Axial velocity component, u*/c,* 

V 
+ 

Radial velocity component, v*/c; 

V Velocity vector, G*/c; 

W Circumferential velocity component, w*/cE 

X Axial co-ordinate, x*/R8 

a Attenuation rate of the parallel-duct modes; imaqinary 

part of k 

B Liner admittance 

Y Ratio of specific heats 

6 Mean boundary-layer thickness, 6*/R$ 

61 Mean boundary-layer displacement thickness, ST/R8 

610 Mean boundary-layer displacement thickness at x = 0 

rl Variable defined in the adjoint homogeneous problem, Eqs. 

(44) - (47) 
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8 Circumferential co-ordinate 

K Thermal conductivity, K*/K~ 

IJ Viscosity coefficient, u*/~.I; 

P density, p*/pi 

T = Viscous stress tensor, ~*/pici' 

‘$1,@2,#‘3r$‘4,$5,$6 Weighting functions for the mass, axial 

momentum, radial momentum, circumferential momentum, 

energy, and state equations, respectively; related to the 

parallel-duct eigenfunctions through Eq. (48) and Eqs. 

(39)-(43) 

0 Viscous dissipation function, (P*/p;cz" 

$ Parallel-duct eigenfunctions 

QP,QT,etc Parallel duct eigenfunctions for the acoustic pres- 

sure, temperature, etc. 

w 

,-. 
w 

Circular frequency, w*R?j/ci = 2vf*Rd/cz where f* is the 

frequency in Hz. 

w - ku,,; Eq. (28) 

Subscripts 

a Denotes a reference quantity; taken to be a mean-flow 

quantity at x = 0 and r = 0. 

0 Denotes a mean-flow quantity 

1 Denotes an acoustic quantity 

C Denotes a mean-flow quantity evaluated at the duct 

centerline 

mn Denotes a component of a matrix 

n Denotes either a quantity associated with a specific duct 

mode or an arbitrary component of a vector 

W Denotes a mean-flow quantity evaluated at the duct wall 

Superscripts 

( I+ Denotes a quantity associated with a right-running 

parallel-duct mode. 

o- - or ( > Denotes a quantity associated with a left-running mode 

( IT Denotes the transpose of a tensor 

o* Denotes a dimensional quantity 
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